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A grid-independent approximate Riemann solver has been developed
for use in both two- and three-dimensional flows governed by the
Euler or Navier-5tokes equations. Fluxes on grid faces are obtained
via wiave decomposition. By assuming that information propagates in
the velocity-difference directions, rather than in the grid-normat direc-
tions as in a standard grid-aligned solver, this flux function more
appropriately interprets and hence more accurately resolves shock and
shear waves when these lie oblique to the grid. The model, which
describes the difference in states at each grid interface by the action
of five waves, produces a significant increase in accuracy for both
supersonic and subsonic first-order spatially accurate computations.
Second-order computations with the grid-independent flux function
are generally only worth the additional effort for flowfields whose
primary structures include shear waves that lie oblique to the grid.
Included in this category is the viscous Hiow over an airfoil in which a
separated shear layer emanates from the airfoil surface at an angle to the
grid. Pressure distortions which can result from misinterpretation of the
oblique waves by a grid-aligned solver are essentially eliminated by
the grid-independent flux function.  © 1993 Academic Press, Inc.

INTRODUCTION

Among today's flow-solvers for the Euler and Navier—
Stokes equations, many are based on upwind differencing.
Prominent are Godunov-type schemes, in which the upwind
bias is achieved by using the solution to the Riemann
problem defined at cach cell face. The Riemaan problem can
be solved exactly with an iterative method, as Godunov [3]
did, or approximately, as Roc [11] did, leading to the
concepl ol the “approximate Ricmann selver.” In Roc’s
method the Buler equations are lincarized about an average
state and then solved exactly. Dilferent types of waves,
represented by the eigenvectors of the averaged flux
Jacobian, are allowed to propagate with speeds equal to the
corresponding cigenvalues.
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The “upwind” direction for each wave is clear in one-
dimensional flow: it is either forward or backward,
according to the sign of each eigenvalue. In two or three
dimensions the direction of wave propagation is not so
straightforward since the waves can travel in infinitely many
dircctions. 1o most current upwind flow-solvers, however,
the upwinding direction is taken normal to the cell faces.
Thus the schemes are strongly coupled to the grid on which
they are implemented, and high resolution of flowfield dis-
continuitics such as shock or shear waves can be achieved
only when the discontinuities are aligned with grid lines.
The Riemann solver interprets waves incorrectly when they
lie oblique to the grid; this improper interpretation can lead
to smearing in the numerical solution.

In recent years, in an attempl to improve the accuracy
of flow solutions, a number of multidimensional upwind
methods have been developed [1, 2,4-6, 8, 10,12, 167]. One
ol the common features of many of these methods is that
information needed at special points because of physical
considerations must be interpolated from surrounding data |
points. Since this adds an extra level of complexity to any
method, particularly for non-Cartesian meshes, it was
decided early in the development of the present scheme fo
only use information obtained by interpolation along grid
lincs as the input to the multidimensional approximate
Riemann solver. It is then the job of the solver to make
“intelligent”™ use of information gleaned from these left and
right states. The solver is handicapped in this task by the
limiied information to which it has access, but the resulting
simplicity and low expense of the method may outweigh its
drawbacks.

The current method uses live waves to describe the dil-
ference in states at a grid face. Four of these are acoustic,
shear, and entropy waves that act in the velocity-difference
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direction (the same dominant direction chosen by Davis
[27), while the fifth is a shear wave that propagates at a
right angle to the other four (also used by Parpia and
Michalek [8]). This fifth wave allows the method to capture
obligue steady shear waves sharply. The method also makes
use of the linearizations of the Euler equations due to Roe
[117 in order to maintain as simple a scheme as possible.
The nature of the wave model makes the method par-
ticularly suited for computing steady solutions; there is
no experience with the use of the method for simulating
transient flows.

1. GOVERNING EQUATIONS

The two-dimensional Navier-Stokes equations can be
written in nondimensional form as

2U GF 0G 7K, G,

Tfl?+ax+7f37_ éx = ady’ (11)

where the conserved variables are U= [ p, pu, pv, pE)T and
the inviscid flux vectors are

pu pu
2
+
O e e B (12)
puv pv’ 4 p
puH pvH

The viscous fluxes are
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R ‘u(@xj a ,) )axk O (14)

and 4 is taken as — (3)u (Stokes’ hypothesis). The ideal gas
equation-of-state closes the set of equations:

2 2
p=(y—1)p[E~“ j”]

The equations can be discretized in finite-volume form as

(1.5)
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(1.6)
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where 8, is the angle that the outward-pointing cell face
normal makes with the x-axis, and g, is the outward
velocity normal to the cell face, given by

g, =ucosfl, +vsind,. (1.9)
Also, A; ; is the area of the cell (7, j}, As, is the length of the
fth cell face, and (d,), is the viscous normal flux per unit
face-length, evaluated using central differencing. @, is the
inviscid normal flux per unit face-length at cell face /,
evaluated using a flux function,

(Dm+1j2:q)[(wl_)m+l/2: (WR)m+uz]- {1.10)
Here W is the vector of primitive variables W=
Lo, v, p]7, m represents the grid index i or j, and m + 3
represents the cell face located between the cell centers m
and m+t. W, and Wy are obtained at the cell faces via
one-point extrapolation for first-order spatial differencing
and via a two-point one-sided extrapolation for second-
order. The subscripts L and R denote the directional bias of
the extrapolation. The forms of the numerical flux function
(1.10) for both the common grid-aligned model and the
current grid-independent model are discussed in the next
section.

2, THE FLUX FUNCTION

Traveling-Wave Form of the Euler Equations

It is widely supposed that differencing of the inviscid
terms is crucial to the treatment of viscous problems;
accordingly, the viscous terms are ignored in this section of
the paper. The resultant Euler equations can be written in
quasilinear form,

d
BW LW AW

—_— 2.1
6t+ dx dy (2.0

where W is the vector of primitive variables, and A and B
are the matrices
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u p 0 0
10w 0 1p
A=lo 0 w0 (22)
0 pa® 0 u
v 0 p 0
0 0 0
B= 23
00 » 1fp (23)
0 0 pa® v
Traveling wave solutions to (2.1) are of the form
Wix, y, t)=W(xcos 0+ ysind—Jir), (2.4)

where 6 is the angle that defines the direction of wave
propagation. Substitution of (2.4} into {2.1) results in the
eigenvalue problem

{Acos 8+ Bsin ) W= 1dW, (2.5)

where dW (s the amplitude of the traveling wave. The four
eigenvalues of (2.5) are

Ay=g+a

a=q-a (2.6)
Ay=g

’14:‘1.9

where ¢ is the component of the velocity in the direction of
wave propagation:

g=ucos 4+ vsinf. 2.7y

The corresponding right eigenvectors are

. T
P, = I,Ecos B,ESin 8, az:l
L e p
- T
P,=1 ~Zcos b, —EsinG,az]
LT o ) 28)
P,=|0 —Zsin B,Ecos 8, 0]
L P P
P,=[1,0,0,0]"

These cigenvectors represent: (1) an acoustic disturbance
that propagates with speed A;; {2) an acoustic disturbance
that propagates with speed A,; (3} a shear wave; and (4} an
entropy wave. The latter two waves travel with speed
4y= 4,. Together the four eigenvectors form the matrix P.
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The characteristic variables for the quasilinear form of the
Euler equations can be computed from

SW*=P~' §W, (2.9)
yielding
1(d
—{—’i‘-i-(cosﬂ ou-+sin B — 50)}1
21a’
11{d
5{—{; (COSB du +sin B = au)}
SW* = (2.10)
—g sin 95u+ cos 060
5p
Sp — -
" PTe _

Rewriting the Euler equations in terms of the charac-
teristic variables gives

oW*
ot

CW*

*
oW _0.
oy

-1
+PTIAP ™

P~'BP (11

In general, A and B do not commute, so there is no angle ¢
for which {2.11) is in diagonal form. This 1s indicative of the
fact that in multidimensional flow the waves propagate in
infinitely many directtons and that for each direction the
eigenvectors are distinet. As numerical schemes are limited
to modeling the flow with a finite number of waves, the
choice of wave type and direction of propagation must be
made carefully. The more “physically relevant” the wave
types and directions of propagation are, the more likely the
model wiil be able to resolve a wide variety of flow features
accurately.

Grid aligned wave models use the grid-normal direction
as the direction of wave propagation. By constraining the
waves in this way, grid-aligned models misinterpret flow-
ficld structures such as shock or shear waves that lie oblique
to meshlines, as described in detail below. We instead seek
to improve the flux function by choosing waves that travel
in directions dictated by the physics of the local flowfield.

The Grid-Aligned Wave Model

As a motivation for the development of the grid-inde-
pendent model, the grid-aligned model [11] is reviewed
here, including a detailed look at some of the reasons why
it misinterprets shock and shear waves that lie oblique to
the mesh. This model employs approximate Riemann
solutions, in which the flux Jacobian matrix C=g®/dU
is linearized about an averaged state, then the equations
are solved exactly in each coordinate direction separately.
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Roe-averaged values, derived in [11], are denoted by hats
in this paper. The four eigenvectors of the matrix C are

ﬁ =[1, i+ dcosf,, +5Sin93,ﬁ+é¢g]T

R,=[l,a—dcosf,, s—asind, H—ag,1"

- * 1)
R,=[0, —dsinf,, dcosd,, a,]"

R,=T11,4a 6, 5(&*+ 677,

and tepresent, respectively, +acoustic, —acoustic, shear,
and entropy waves. In (2.12), g is defined by (2.7), and r is
defined by

r=-—-usinf@+vcosf. (2.13)
The subscript g on the g and r in (2.12) indicates that 0 is
taken as ¢, the angle that the grid-normai direction makes
with the x-axis. When the equations are written in primitive-
variable form, the waves (2.12) are represented by P,, P,
P;,and P, in (2.8), with & taken as §,,.

The strength §2, of each wave arises from satisfying:

4U=Y O,R (2.14)
k

Since the eigenvectors form a basis for the eigenspace of this
system, there is always a unique set of strengths that satisfy
(2.14). They are, written as components of the vector €2,

5 (dp + pad Aq)

| 2
—

o)

il
(o)
=

, (2.15)
pdr
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1
— (@ 4p — 4p)
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Ap

#4-plane

+acoustic

FIG. 1.
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where A(-)={ )z — {-},. The wavespeeds, which all point
normal to the grid face (in the 8 ~direction), are the eigen-
values of C;

lLi=¢+a
fy=d—d
2 (2.16)
r3=d
z4=qn.
The flux on each grid face is computed using
4 - - o~
=31 D+ Op)— 3 3 |4l 2R, (2.17)
k=1

We will now give a geometric interpretation of the grid-
aligned model. This will be useful later also in describing
alternative models. The difference in states at an interface
can be represented in (du, 4v, dp)-space by placing L, the
representation of the state to the left of the interface, at the
origin, and the right state R at {du, dv, 4p). The grid-
aligned model assumes that this change is due to waves
travelling along the grid-normal. Each such wave can be
represented by a line parallel to one of the eigenvectors
(2.8), with @ chosen as f,. For example, if the difference in
states really was due to a single acoustic wave of the
+ family, R would be found somewhere along the heavy
line in Fig. 1a. Note that both acoustic waves lie in the
plane (du/4v)=cotf,. (Since this is a linearized model,
all wave paths are straight lines.) A difference due solely to
a shear wave travelling along the grid-normal would place
the point R in the plane 4p=0 and, also, in the plane
(du/dv)= —tan 6, which lies at right angles to the plane
shown in the figure. The effect of an entropy wave is not
representable in (Au, dv, Ap)-space.

In the grid-aligned model, an arbitrary jump from L to R
will be represented uniquely as the sum of three jumps, each
paraliel to one of three eigenvectors. It will only rarely be

b ap

Grid-aligned wave model interpretations of a single shock wave: {a) aligned with grid; (b) oblique 1o grid.
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the case that such a representation is truly appropriate. For
example, in Fig. 1b we show the case where the jump from
L to R is caused by a single acoustic wave nor aligned with
the grid. Such a jump (see (2.8)) must lie along a generator
of the “acoustic cone”

(4p)? = p*a*((du)’ + (4v)?). (2.18)

The grid-aligned model will represent the jump by the path
shown, which includes a shear wave as well as an acoustic
wave of the opposite family. These extra waves add dissipa-
tion which smears the numerical solution.

The grid-aligned flux function can also misinterpret a
pure shear wave that lies oblique to a grid face. This situa-
tion is illustrated in Fig, 2. In Fig. 2a, left and right states are
indicated on a {Adu, Av, Ap)-diagram. There is no pressure
difference between L and R, and the velocity-difference
vector V,—V, is at some angle other than 90° to the
8,-direction. {It would be normal 10 the 8 -direction for a
shear wave aligned with the grid face, in which case the wave
model would interpret the difference correctly with a single
shear wave.) The grid-aligned scheme now includes two
acoustic waves in its interpretation of the difference in
states. These waves add dissipation which smears the
numerical solution. Additionaliy, if the wavespeeds asso-
ciated with each of these acoustic waves are of opposite sign,
then the scheme computes a flux at the interface with a
pressure that is different from the correct pressure by an
amount Ap, as shown in Fig. 2b. In this figure, a time history
of the wave locations is drawn in relation to the grid-normal
direction. The flux at the interface is computed as either
the left flux plus the change across left-running waves or,
equivalently, the right flux minus the change across the
right-running waves. In either case it can be seen that the
incorrect pressure is given at the interface.

The Grid-Independent Wave Model

The motivation behind the development of the present
grid-independent approximate Riemann solver is the desire

a lAP
—

N—plane

st
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to be able to recognize and appropriately model both shock
and shear waves regardless of their orientation with respect
to the grid. The method for accomplishing this geal is the
following: (1} choose a direction of wave propagation more
physically appropriate than the directions defined by the
grid, {2) represent the difference in L and R states with a
combination of acoustic, shear, and entropy waves, and
(3) form a flux in the grid direction from the information
propagating in the physically relevant grid-independent
direction.

The primary wave propagation direction used at each
interface is the velocity-difference direction

v —v
(Gd)m+l,'2=tan_l('_1—_'—m+l m),

Ut — U

(2.19)

defined from —n/2 to 7/2, where m represents the grid index
i or j. This is the angle that the veloeity-difference vector,
V,..1— V.., makes with the x-axis. The 8, direction is
chosen because in this frame the velocity components &,
and #, normal to 8, are equal, as depicted in Fig. 3. There-
fore the differences between the two states can be inter-
preted cither as a compression normal to @, or a shear
aligned with #,. In Fig 4a, the former interpretation is
illustrated. The velocity components tangential to the shock
are equal (only the normal component is aifected by the
shock). The shock wave could be propagating with some
velocity #g in the 6 ,-direction. The value of #g is zero
for a steady shock wave. A shear-wave interpretation of
the difference in velocities is illustrated in Fig. 4b. Here,
the shear wave propagates with velocity ¢, =0, in the
{8, + n/2)-direction. This propagation velocity is zero for a
steady shear wave.

Since there are two interpretations of a velocity difference
in terms of a dominant wave, it is necessary that the method
be able to model both types as well as have some way of
determining which is a better description of the true
situation, The present method models both types by
describing the difference in states by a combination of two
acoustic waves and an entropy wave propagating in the

b t
—acoustic shear +-acoustic
| /
P +Ap
L R grid-normal

FIG. 2. Grid-aligned wave model interpretation of an oblique shear wave: (a) wave decomposition; (b) wave directions for subsonic flow.
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FIG. 3. Compenents of V, and V4 in the 0 ~frame.

#,-direction and an additional shear wave propagating in
the (0,4 n/2)-direction. This shear wave causes a change in
velocity parallel to 6, with no change in pressure, thus
allowing for sharp capturing of oblique shear waves of the
type depicted in Fig. 4b.

The representation in primitive-variable form of the ¢,
acoustic waves and entropy wave are simply P,, P,, and P
from (2.8) with 8 taken as &, The (6,+ n/2) shear wave is
represented by P, with 6 =0, + =/2:

— 0 .
2 sin (6d+ E)
p 2
P(e,,+ r/2)shear — a 7
—co§ (Bd—k—)
P 2
| 0 -
B 0 ]
——cos §,
I . (2.20)
a

FIG, 4.
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The strengths of the four waves must still satisfy (2.14),
where the R, now represent the grid-independent waves for
the conserved-variable form of the egunations:

1,4+ dcos B, 6+dsinf, H+ad,]"

L
R,=[1,i—dcost,6—asinb, H—ag,]"
=1 d d qa (2.21)

R, =140 3@+ %"

These vectors represent, respectively, + 8, acoustic, —8,
acoustic, (8, n/2) shear, and entropy waves. The hatted
variables are still Roe-averaged variables, and the subscript
d on the ¢ indicates that ¢ is taken as &, in (2.7). Note that
the acoustic and shear waves in (2.21) all cause a change in
velocity in the @ direction only; there is no equivalent to
the grid-aligned shear wave R, from (2.12) to account for
differences in velocity in any other direction. The reason for
this is that, by definition, the states L and R are separated
by a velocity difference in the 8 ~direction exactly, so there
is no need for any other wave.

Unlike in the grid-aligned method, there is not a unique
combination of these four waves that satisfies (2.14) since
(2.21) are not all linearly independent. It turns out that the
entropy wave always has a strength of 2, = dp — Ap/a*, but
there is some freedom in picking the strengths of the other
three waves. This reflects, as mentioned earlier, that there
are two types of dominant waves, represented by Figs. 4a
and b, that could describe the difference in states. The model
must choose which type is more likely to be representative
of the true situation and allow that type of wave to
dominate in the numerical representation.

Two methods that allow the model to choose the
“correct” wave type are described here. Both are a function
of the pressure difference across the interface: if a large
pressure difference exists, it is more likely that an acoustic
wave is primarily responsible for the difference in states.
Similarly, a small difference in pressure indicates that a
shear wave more likely is the primary wave.

Interpretations of velocity difference: (a) shock; (b) shear.
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The first method is termed the minimum-pathiength
model and is implemented by choosing the combination of
waves such that the pathlength in (4u, dv, Ap}-space is min-
imized. This minimum-pathlength model is accomplished
by using either two acoustic waves and an entropy wave or
one acoustic, a (6,+ n/2) shear, and an entropy wave.
{Recall that the entropy wave is not representable in (du,
4v, Ap)-space, but its strength is 4p — 4p/@* independently
of the way the remaining waves are aliocated.} The choice of
path depends on the location in phase space of the right
state R relative to the cone defined by all acoustic waves
emanating from L. By definition, R lies in the 8 rplane. If R
resides inside the “acoustic cone,” as is the case with R, in
Fig. §, then two acoustic waves describe the shortest path. If
R resides outside the cone, as represented by R, in the
figure, then one acoustic and a {0,+%/2) shear wave
describe the shortest path. The mathematical conditions for
R inside or outside the acoustic cone are

Inside: (4p)* 2 [pa(ducos 8,+ Advsin6,))°  (2.22)
OQutside: {4p)? < [pa{ducos B, + dvsin § )12 {2.23)

The minimum-pathlength model always uses threc waves
out of a choice of four possible wave types to describe the
difference in states.

A second strategy, due to Parpia and Michalek [9], is to
choose the strengths of the acoustic and shear waves such
that the path is in some sense closest to the straight line con-
necting L and R in phase space. More specifically, the area
between the waves (taken in a certain order) and the direct
path L - R is minimized. A geometric representation is

Ap

acoustic cone

8 .
+y acoustic Av

84
(64 + ) shear
Au

FIG. 5. Minimum-pathlength model wave decomposition {entropy
wave not pictured).
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given in Fig. 6, where again the entropy wave, although pre-
sent, is not pictured. If R lies inside the acoustic cone, ltke
R, in the figure, then the path that minimizes the area
(shaded region ) is accomplished by two acoustic waves, If R
lies outside the cone, as represented by R,, then some com-
bination of two acoustic waves and a (6,4 n/2) shear wave
gives the minimum area. The exact expression will be given
below. The minimum-area model uses either three or four
waves to describe the difference in states at each interface.
The grid-independent model, using either the minimum-
pathlength or minimum-area variation, automatically
describes a pure shock wave at an interface with essentially
a single acoustic wave, regardless of the orientation of the
discontinuity with respect to the grid. Similarly, a pure
shear wave at an interface is modeled with essentially a
single (8, + r/2) shear wave. Hence this model avoids the
problems depicted in Figs. 1b and 2 that the grid-aligned
model encounters when it models shock or shear waves
that lie oblique to the grid. Through this more accurate
modeling, more accurate computed solutions should arise.
Unfortunateiy, numerical experiments show that the
grid-independent wave model can produce nonlinear feed-
back that results in oscillatory flowfields. Smail changes in
the computed values of 8, can feed back into the solution,
producing further changes in 8,. An easy way to inhibit this
feedback, applicable if the flow solver is used to march to a
steady solution, is to freeze the 8, values at each face at some
point in the computation, calling these #,. The four wave
vectors in (2.21) remain the same, only with #, replacing 0,,.
Since the state R does not necessarily lie in the 8,-plane,
at least one additional wave is now needed to account
for a velocity difference out of the ¢,;-plane. A shear wave

+8 acoustic
)

Av

Au

FIG. 6. Minimum-area model wave decomposition (entropy wave not
pictured).
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propagating in the #direction produces a change in

velocity normal to 8, and can therefore be used as the

additional wave, 1t is represented by

R, =[0, —dsin#,, dcos 8y, ¢{—dsin 8+ 6 cos 047"
{2.24)

Some loss of resolution may be expected to go hand in
hand with the freezing of the wave-propagation directions,
However, through the careful choice of a freezing proce-
dure, it turns out that this loss is very small. One procedure
that works well is to recompute 8, at each grid interface
once every fixed number of iterations until a certain level
of convergence is reached. After this, 4, remains frozen. A
second procedure is to simply initiate the grid-independent
computation from a converged grid-aligned solution, with
0, frozen thereafter.

The combination of the four waves from (2.21) (with 8,

taken as 8,) plus the 6}, shear wave (2.24) results in a model
that employs five waves, which can be used to generate a
family of flux formulay with a free parameter f. This family
includes both the minimum-pathlength and minimum-area
models discussed above, The wavestrengths -that satisfy
(2.14) are taken as

-Ap . q
YE + b’ (Au cos 8+ Avsin 8))

4
2—;— B 2% (du cos &, + Av sin 6))

fe)
il

(f— 1)5(414 cos 0+ Avsin 8y |. (2.25)
1 52
(@ dp—4p)

&

%(—Au sin 0%+ dv cos 07)

i -

The minimum-pathlength model is obtained when

,B=min[ ,1]‘

In this case, the grid-independent model uses only four
waves at a time since either the (8, + n/2) shear wave-
strength or one of the acoustic wavestrengths is identically
zero. The minimum-area model results when

Ap/(pa)
Au cos B, + Av sin 8,

{2.26)

: Ap/{pa} z
= 1 2.27
b mm[{du cos 8, + Av sin 6;,} ’ ] (227)

and the model uses all five waves when R lies outside the
acoustic cone, and four waves when R lies inside the

5817108/2-9
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acoustic cone (the (8 + n/2) shear strength is zero). Deriva-
tions of these two expressions (2.26) and (2.27) can be found
in Rumsey [15]. In practice, a small number ¢ is added to
the denominators to avoid division by zero in regions of null
gradient. Also, fi 1s generally limited to be no less than 0.05,
and is frozen along with 8}, as an aid to convergence.

Numerical experiments indicate that both the minimum-
pathlength and the minimum-area models give very similar
results, although the minimum-area model tends to be
slightly more dissipative for a wider range of test cases.
Hence, it exhibits less oscillatory behavior and usually
converges slightly faster. The minimum-area model is used
for all the computations in this paper.

In spite of the fact that there is no rigorous justification
for its use in the grid-independent model, the “standard”
flux formula

5
O=1(d, +®y) ! z 15 3R, (2.28)

is used to obtain the flux per unit face-length normal to each
grid face. This formula is the average of the two expressions:

®:¢L+ Z ik‘ékﬁk

i<

(D:(DR*‘ Z ikékﬁk‘

i»0

(2.29)

Hence it may be argued that it is correct because of its sym-
metry—it favors neither input state—but this reasoning is
merely heuristic. An attempt was made in [ 157 to justify the
use of (2.28) based on comparisons with a different formula-
tion of the model, but, from a theoretical standpoint, the
issue still remains unresolved.

The wavespeeds ik are taken as the components of the
individual wavespeeds in the 8 -direction:

Ay =(q,+d) cos(0,~0,)

1= (gy—d)cos(#)—8,)

Ay =F,{—sin(0,—6,)} (2.30)
ha= =G cos(8,—48,)

is— Gycos(0,—0,).

Note that the grid-independent model reduces to the grid-
aligned approximate Riemann solver when 6;=0, and
f=1 (ie., the (#,+ n/2) shear-strength vanishes).

It is worth noting at this point that, although it is
reasonable to search for single waves that are not
necessarily aligned with the grid face to “explain™ a trans-
ition between two states, the finite-volume scheme itself is
unable in general to preserve an oblique discontinuity
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exactly once it is found. Conservative difference schemes are
based on cell averages of the solution, rather than point
samples, and their nature is to spread the discontinuity over
a strip of cells. It is hoped though, through the application
of the relatively simple grid-independent model, that
oblique discontinuities (while not preserved exactly) will be
resolved more accurately than those obtained using the
grid-aligned model.-

Stability and Monotonicity

A linearized stability analysis [13, 15] of the grid-inde-
pendent model in conjunction with the two-dimensional
Euler equations, advanced in time using explicit time-
marching, shows that some modes of the Fourier footprint
contain eigenvalues that lie on the imaginary axis. Hence
the stability boundary of the time-marching scheme must
include a finite portion of the imaginary axis as well. Explicit
forward-Euler time-stepping does not satisfy this require-
ment, but muitistage schemes can. The four-stage scheme,

(m)
U=y s ”_AA_[ (Z ®, As,)
!

At v
U =U" + 22V @, As,)
34\5
(2.31)
U 2 (5 0,05
_ 214 ; / {

At )
U('"+1):U(")+7(Z¢,’AS/) s
!

with # =0.15, is stable up to CFL numbers of about 1.75 for
first-order spatial accuracy and 0.87 for second order. These
results are dependent on the Mach number; the maximum
allowable CFL numbers are generaliy higher than this when
M is of order 1. For example, at M =3 the maximum CFL
numbers are about 2.2 for first order and 1.3 for second
order.

The grid-independent model in an implicit approximate-
factorization algorithm is stabl¢ only up to a CFL number
of about 2.5 for first-order and 0.3 for second order when
first-order-accurate grid-aligned approximate Jacobians are
employed on the left-hand side. Again these CFL numbers
are dependent on Mach number. Typicai limits for Mach
numbers of order 1 are about 4 for first-order spatial
accuracy and 2 for second-order. When appropriate grid-
independent left-hand side approximate Jacobians are
employed, first-order computations are unconditionally
stable. Similarly, second-order computations are uncondi-
tionally stable according to the linearized analysis if block-
pentadiagonal systems (as opposed to tridiagonal systems)
are solved with appropriately chosen grid-independent
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approximate Jacobians. Maximum CFL numbers of about
100 can be attained in practice with this strategy, although
the optimum CFL number for convergence generally lies
between about 2 and 6.

A linearized monotonicity analysis is used to investigate
the monotonicity properties of the grid-independent model.
The analysis is derived from considerations of the one-
dimensional Euler equations:

(2.32)

These equations can be diagonalized into three nonlinearly
coupled equations, each which describes the convection of a
characteristic variabie W, :

W W

23
ot dx (2.33)

The numerical scheme to advance each W, can be written

!

(W™= 3 (edn (W)Y

m=—1

(2.34)

where /=1 for a scheme with a three-point stencil. From
Godunov [3], we know the scheme (2.34) is monotone if all
of the coefficients (¢, ), are greater than or equal to zero. Or,
stated differently, the scheme for this diagonaiized system of
equations is monotone if

(¢dm 0O 0

(n+1)

ev. (%‘&T) =e.v. 0 (ca), 0 [=20 (2.35)
e 0 0 (CS)m

form=—1{ ..,0,..,1 and e.v.(-) represents the eigenvalues

of (-). But the matrix aU"*V/aUY) _ termed the

“influence matrix,” is simtlar to the matrix in (2.35) and
hence has the same eigenvalues. So

(n+1)
e.v. (an )2 0, m=—1..,0,.,1[ (2.36)

U™

i+

represents an equivalent monotonicity condition for the
one-dimensional Euler equations. It turns out that the
condition when m =0 can be eliminated from (2.36) since
AU+ D60 2 0 acts merely to limit the time step.

The monotonicity analysis of the two-dimensional Euler
equations is not as straightforward, since the equations are
not simuitaneously diagonalizable in both coordinate
directions, However, we proceed by diagonalizing one of the
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coordinate directions, and we ignore the influence matrix
from the other direction. This translates into the condition

(_n_+ 1}

v (k)20 k=L G-L @3]
k

for a scheme in which the update at each cell is governed by
the computational stencil made up of the points (i, ),
(i+1,7), (i—1,/), (i,j+1), and (i,j—1). In practice the
eigenvalues may be complex, in which case we apply (2.37)
to the real part only. This is only a localized analysis in the
particular coordinate direction considered. It is not clear
what the combined effects of the monotonicity property
(2.37) and the property in the other coordinate direction
are. Nonetheless, this approach is utilized to help define a
limiting procedure for reducing oscillations in two-dimen-
sional solutions. Details can be found in [ 14, [5].

The grid-independent model is shown in [ 14, 157 to be
non-monoctone in general for even first-order spatial
accuracy. However, the oscillations that occur near dis-
continuities can be reduced in magnitude to “acceptable”™
levels for a wide variety of problems by limiting the
wave-propagation (#)) directions according to a strategy
suggested by the linearized analysis. This gain in reduced
oscillatory behavior does result in the loss of some of the
high resolution of oblique shock and shear waves, although
the resolution is still generally greater than results using the
grid-aligned scheme. Limiting of the #)-direction is also
necessary to avoid odd-even point decoupling in boundary
layers for viscous flows. This condition occurs on grid-inter-
faces that are aligned with the flow-direction and is due to
the fact that the &)-direction lies approximately along the
grid-face so that all grid-normal components of the
#.,-wavespeeds are nearly zero. Furthermore, the (8, + n/2)
shear wave has a very small wavespeed, so the dissipation is
also verysmalland the resultisessentially central-differencing
across the boundary layer.

Extension to Three Dimensions

The extension of this model to three dimensions is
straightforward. The velocity-difference direction is again
used as the primary wave-propagation direction. It is
denoted by the direction vector n,, defined by the polar-
coordinate angles,

v —v
()1 =tan™" (__m+1 m)
um+1_"um

- (wm - Wm) * Sign(um - um)
(!pd)m-kl/Z:tan !( L S5 = 5 |
\ﬁ“erl_um) + (U 1= Vi)

(2.38)
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at cell face m + 5, where m represents the grid index , j, or
k. These angles are each defined from — n/2 to 7/2. Asin two
dimensions, the direction of wave propagation is frozen as
n, in order to eliminate nonlinear feedback in the solution,
and the end result is again a five-wave model.

All of the waves except for the (n),+ n/2) shear wave (the
three-dimensional equivalent to the (8], + n/2)} shear wave)
have wavespeeds in the nj;-direction. The direction in which
the (n),+ n/2) shear wave itself should be allowed to
propagate is somewhat unclear since, in three dimensions,
there are an infinite number of directions normal to the
nj-direction. However, in order for the model to be able to
sharply capture oblique shear waves through which the
velocity undergoes rotation, the propagation direction is
taken as the direction normal to the planc spanned by V,
and V. The velocity of this particular shear wave is then
identically zero when the direction of wave-propagation is
not frozen. When the direction /s frozen, then the velocity
may have some (usually small) finite value.

An empirical angle-limiting method for reducing oscilla-
tions near computed shock and shear waves has not been
devised for three-dimensional flow due to its inherent
complexity. However, 1t has been found in general that the
extra degree of freedom in three dimensions seems to relieve
some of the oscillation problems present in two dimensions
when the grid-independent model is used.

3. NUMERICAL RESULTS

All computations are performed on the Cray 2 computer
at NASA Langley Research Center. Except for the oblique
shock reflection case, all computations are performed using
the implicit approximate-factorization time-stepping proce-
dure, and convergence is assumed to be reached when the
L -norm of the residual of the equations drops by at least
four orders of magnitude and/or the lift and drag values
settle down and do not vary significantly with further itera-
tions. Per iteration, the Euler/Navier-Stokes solver with the
grid-independent flux function employed is about 1.5 times
more costly than when the grid-aligned flux function is
employed. A significant percentage of this cost is associated
with the imiting of the #)-directions. Without 8,-limiting,
the grid-independent model is about 1.2 times more costly
than the grid-aligned model per iteration.

In addition to the increased cost per iteration, the grid-
independent model also generally requires more iterations
than the grid-aligned model to reach the same level of con-
vergence. Based on the convergence criteria given above, it
1s difficult to give precise comparisons between the methods.
However, for shock-reflection calculations, given below, the
grid-independent model requires roughly 1.2 times as many
iterations as the grid-aligned model for first-order-accurate
solutions and roughly 1.6 times as many for second order to
drive the Ly-norm of the residual to 1 x 10~'%
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FIG. 7. Pressure contours for ablique shock reflection, first-order, 97 x 33 grid: {a) grid-aligned; (b) grid-independent.

Obligue Shock Reflection

The Euler equations are used to compute the supersonic
flow (M = 2.9) over a flat plate with an oblique shock wave
reflecting off its surface (the flow is turned through an angle
of 10° by the incident shock). Computations are performed
on a 97 x 33 Cartesian mesh. First-order results using both
the grid-aligned and grid-independent models are shown in
Fig. 7 in plots of nondimensional pressure contours, plotted
from 1.2 to 3.6 in increments of 0.3. The grid-independent
model resolves the shocks significantly better than the
grid-aligned model, and results appear to be monotone as
well for this problem.

In Fig. 8, second-order computations (with no iimiting of
higher-order terms) show the grid-independent results to be
only marginally sharper than the grid-aligned results. Also,
there are small oscillations present in the grid-independent
solution downstream of the reflected shock which show up
in the pressure contours as “bubbles” and “kinks.” The
convergence histories of the first- and second-order grid-
aligned and grid-independent schemes using explicit four-
stage time-marching (2.31) are shown in Fig. 9.

Supersonic Flow over an Airflow

Several Euler computations are shown for the NACA
0012 airfoil at M =1.2, x=0° on a 257 x 73 O-mesh with
an outer boundary extent of 20 chords and an average
minimum spacing at the body of 0.0031 chords. At these
conditions, the NACA 0012 airfoil has a fowfield with a
curved bow shock located in front of the airfoil and oblique

shocks emanating from the trailing edge. Figure 10 shows
nondimensional pressure contours, plotted in increments of
0.05 (the freestream value of 1.0 is not plotted), for the
grid-aligned and grid-independent models using first-order
spatial accuracy. The shock waves are captured much more
sharply by the grid-independent method. However, in spite
of the fact that the 8, wave-propagation directions are
himited in an effort to reduce oscillations, there are still some
small oscillations present behind the bow shock.

Second-order computations using the grid-aligned and
grid-independent models (with no limiting of higher-order
terms) are given in Fig. 11. The grid-independent results are
still somewhat sharper than the grid-aligned results, but the
difference is not so marked as for first-order. Again there are
noticeable oscillations near the bow shock in the grid-
independent computation.

Subsonic Flow over an Airfoil

A grid-convergence study is performed using the Euler
equations for subsonic flow over an airfoil in order to
investigate the effect of the grid-independent model on an
airfoil flowfield where no shock waves are present. The con-
ditions are M =0.3 and o = 1°, and results are computed on
three grids. The finest of these is the same 257 x 73 O-mesh
used in the supersonic flow calculations, and the two
coarser meshes are achieved by removing every other point
from the next finest mesh,

Fipure 12 is a plot of computed drag ceefficient versus the
inverse of the square root of the grid density for the grid-

b

FI1G. 8. Pressure contours for oblique shock reflection, second-order, 97 x 33 grid: {a) grid-aligned; {b) gn'd-independém.
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FIG. 9. Convergence histories {or oblique shock reflection, 97 x 33
grid.

aligned model and the grid-independent model on the three
grids using first-order spatial discretization. The “exact”
Euler solution should give zero drag. The grid-independent
model gives a far better prediction of the drag than the
grid-aligned scheme for all three grids. Entropy contours
(where entropy is defined as p/(p’)— 1) for both methods
are given in Figs. 13 and 14 on the coarsest and finest
meshes. Contour values plotted are in increments of 0.001
for all figures. These figures indicate significantly lower
entropy production over the airfoil surface using the grid-
independent model. The maximum entropy values for the
grid-aligned model are 0.0303, 0.0251, and 0.0183 for the
coarsest through finest meshes, respectively. For the grid-
independent model the maximum values are only 0.0052,
0.0028, and 0.0018.
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It is believed that the difference in entropy levels is due to
the different ways that the two models interpret the flow
near the stagnation point of the airfoil. Near the stagnation
point, the flow undergoes very rapid turning with relatively
small changes in pressure. The grid-aligned model interprets
this turning to be in part due to the action of acoustic waves,
as discussed earlier (Fig. 2). Because the local flow is sub-
sonic, these acoustic waves cause the pressure at interfaces
near the leading edge to be computed incorrectly, resuiting
in increased entropy generation there. In contrast, the
grid-independent model interprets the rapid turning near
the stagnation point to be due primarily to the action of
(67 + n/2) shear waves, which have no associated pressure
jump across them. Numerical entropy generation is lower as
a consequence,

Although not shown, the grid-aligned and grid-inde-
pendent models produce results that are very similar to each
other in a second-order spatially accurate computation for
this configuration, Hence there does not appear to be a
significant advantage to using the grid-independent model
over the grid-aligned model for second-order computations
of subsonic airfoil flows such as this.

Subsonic Separated Viscous Flow over an Airfoil

A practical case where an advantage of the grid-inde-
pendent model over the grid-aligned model is fully realized
in a second-order computation is for viscous separated flow
over a NACA 0012 airfoil at M = 0.5, 2 = 3°, and Re = 5000,
Fuil Navier-Stokes computations are performed on a
257 x 97 C-mesh with outer boundary extent of 14 chords

FIG. 10. Pressure contours for supersonic flow over NACA 0012 airfoil, first-order, 257 x 73 grid: {(a} grid-aligned; (b} grid-independent.

581/105/2-10
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FIG. 11.

and average minimum spacing on the body of 2x 10~
chords. There are 176 cell faces on the airfoil,

This test case was first discussed by Venkatakrishnan
[17]. He found that on even reasonably fine meshes, the
grid-aligned wpwind scheme can produce erroneous results
since there is a detached shear layer emanating from about
midchord on the airfoil upper surface which is not oriented
with the grid. The shear is misinterpreted by the grid-
aligned model as a combination of shear and compres-
sion/expansion, with the end result of a distortion in the
computed pressure. As the grid is refined, the distortion
diminishes in magnitude. However, even on a mesh as fine
as the 257 x 97, the computed pressure distortion is still
clearly evident, as shown in Fig. 15a in a plot of pressure
contours taken at intervals of 0.005. The grid-independent
model result, given in Fig. 15b, essentially eliminates this
distortion.

0.12 -
| —o— grid—aligned
——g- Brid—independent
0.08
L
(5]
.04
r ST
0.00 —r-D"[——Er 1 L 1 N 1
0.00 001 002 003 0.04
1/(nisnj)"?

FIG. 12. Grid-convergence study for subsonic flow over NACA 0012
airfoil, first-order,

Pressure contours for supersonic flow over NACA 0012 airfoil, second-order, 257 x 73 grid: (a) grid-aligned; (b} grid-independent.

1D Oblique Supersonic Shear

A three-dimensional oblique supersonic shear case is
computed within a cube 1.8 units on a side using a Cartesian
17 % 17 x 17 mesh. The velocity undergoes both an increase
in magnitude as well as a rotation through the shear layer.
The shear layer itself is assumed to lie along one diagonal of
the cube. Below the layer the nondimensional velocity com-
ponents are u=3, v =3, and w =3, while above the layer
they are w=4, v =2, and w =4, There is one transition cel
where = 3.5, v=2.5, and w=3.5. There is no pressure or
density change across the shear layer.

A first-order computation using the grid-aligned modei
gives the in-plane Mach contour levels in Fig. 16, shown in
increments of 0.05, for three different cuts through the cube.
The exact solution (which is the initial condition for the
computation) would show very narrowly spaced contours
along the diagonal in the { = constant plane, horizontally in
the j=constant plane, and vertically in the k = constant
plane. The shear layer is seen to spread a significant amount
through the domain in this computation. The grid-inde-
pendent model gives the results shown in Fig, 17. The shear
layer is now preserved with fewer interior points. Although
not shown, the maximum computed deviation in the
pressure field from the exact solution {of no pressure change
at all through the shear layer) is about 23 % using the grid-
aligned model, while the grid-independent model solution
has a maximum error of only about 5%.

In-plane Mach contours from a second-order computa-
tion using the grid-aligned model are given in Fig. 18, while
second-order grid-independent model results are given in
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FIG. 13. Entropy contours for subsonic flow over NACA 0012 airfoil, first-order, grid-aligned: (a} 65 x 19 grid; (b) 257 x 73 grid.

S ——— R

FIG. 14, Entropy contours for subsonic flow over NACA 0012 airfoil, first-order, grid-independent: (a) 65 x 19 grid; (b) 257 x 73 grid.

-

FIG. 15. Pressure contours for viscous flow over NACA 0012 airfoil, 257 x 97 grid; (a) grid-aligned; (b} grid-independent.
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FIG. t6. In-plane Mach contours for 3D oblique shear, 17 x 17 x 17 grid, first-order, grid-aligned: (a) i =9 plane; (b) /=9 plane; (c) k =9 plane.

c T

FIG. 17. In-plane Mach contours for 31 oblique shear, 17 x 17 x 17 grid, first-order, grid-independent: (a) /=9 plane; (b)j =9 plane; (¢) k =9 plane.

FIG. 18. In-plane Mach contours for 3D oblique shear, 17 x 17 x 17 grid, second-order, grid-aligned: (a) / =9 plane; (b) /=9 plane; (¢} & =9 plane.
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FIG. 19. TIn-plane Mach contours for 3D oblique shear, 17 x 17 x 17 grid, second-order, grid-independent: (a) i =9 plane; (b) j=9 plane; {c) k=9

plane.

Fig. 19. Even with second-order spatial accuracy the grid-
independent model gives significantly higher shear-layer
reselution than the grid-aligned model. The pressure fTeld,
not shown, is also computed more accurately. It has a
maximum errot of about 5%, while the grid-aligned result
has a maximum error of about 1(%.

4. CONCLUSIONS

Two-dimensional results obtained using the grid-
independent model indicate that the method is generally
worthwhile for first-order steady-state computations. Both
an oblique shock reflection off a flat plate as well as super-
sonic flow over an airfoil with a detached bow shock and
two trailing edge shocks that cut obliquely through the grid
are computed more accurately using the grid-independent
method than the grid-aligned method. Also, subsonic
Euler airfoil-flow computations show significantly reduced
entropy generation over the airfoil surface, resulting in
better drag prediction. The grid-independent model is about
1.5 times more costly per iteration than the grid-aligned
model and roughly 1.8 times as costly to reach the same
level of convergence. Hence the cost penalty is not severe
considering the increased accuracy of the first-order
solutions.

When second-order spatial accuracy is employed, the
small increase in accuracy attained by the grid-independent
model is generally not worth the accompanying drawbacks.
In particular, oblique shock waves are resolved only slightly
more sharply than when using the grid-aligned method, and
there is very little decrease in the numerical entropy genera-
tion for a subsonic airfoil computation. These facts, taken in
combination with a propensity for increased oscillatory
behavior near discontinuities, makes the grid-independent
model an unattractive alternative to the grid-aligned model
for second-order computations in general.

The only notable exceptions to this conclusion are found

in cases involving oblique shear waves. Included in this
category is the viscous flow over an airfoil for which the flow
separates and a shear layer moves away from the body at an
angle to the grid. In this case, numerical pressure oscilla-
tions evident in the separated region over the airfoil upper
surface using the grid-aligned model are significantly
reduced by the grid-independent model, which properly
interprets the oblique waves present in the shear layer.

Conclusions from three-dimensional Euler test cases run
along similar lines to those from two dimensions. For flows
involving shock waves that lie oblique to the grid [14, 15],
not shown in this paper, the grid-independent model
improves the shock resolution considerably in a first-order
computation, but second-order computations show very
little difference from grid-aligned computations. An oblique
supersonic shear wave, on the other hand, is resolved better
using the grid-independent model for both first- and second-
order computations.

QOverall, then, for both two- and three-dimensional com-
putations, the grid-independent model is seen to be worth
the additional effort only for first-order spatially accurate
computations, or computations involving only oblique
shear waves. In general, inviscid flows with shock waves
and/or flows with no shock or shear waves at all are
better computed using the grid-aligned wave model when
accuracy greater than first order is desired. The additional
expense and oscillation-prone nature of the grid-inde-
pendent model makes it unattractive for use in such cases.

Despite its shortcomings, the grid-independent model
described in this paper can be thought of as a possible step
in the right direction toward modeling the multidimensional
flow physics of the Euler and Navier—Stokes equations more
accurately than grid-aligned models. Its very low expense
and modular nature (it is simply a flux function that can be
inserted easily into an existing Euler or Navier-Stokes
code) make it an attractive candidate for further analysis
and development.
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5. RELATED IDEAS AND FUTURE DIRECTIONS
FOR MULTIDIMENSIONAL FLUX FUNCTIONS

Clearly, one of the primary drawbacks of the muitidimen-
sional flux function described in this paper is its propensity
to gencrate spurious oscillations near computed shock and
shear waves. Several ideas have been offered to improve the
model’s monotonicity properties. None have proved to be
entirely satisfactory, although the angle-limiting procedure
used for all results contained herein, which is based on a
linearized monotonicity analysis, has given the best results
for the widest range of test cases,

Another idea is described here because of its conceptual
simplicity and potential for future improvement. The
method consists of defining new left and right states at an
interface that are more consistent with the locally assumed
wave structure. An example of an assumed wave orientation
is drawn in Fig. 20, for square cells. Here, assuming that
constant states exist to the left and right of a wave at an
interface, the shaded region represents the constant state
Uf and the unshaded region represents the constant state
Ug. The average state in the left cell, however, is a combina-
tion of the states U¥ and U, area-weighted,

UL=(1¥%)U={+%U:, (5.1)

where « is the area of the unshaded region in the left cell,
and A is the area of the cell, A similar equation exists for
Ug. Solving for U¢ and U§,

UI*‘.=(1 +a*}UL—"a*UR

(5.2)
Ug=(l+a*}Ug—a*U,,
where
_ (g/4)
=AY (53)

When the wave angle (with respect to the grid face
normal) is not zero, (5.2) has the cffect of increasing the

FIG. 20. Wave orientation in relation to Cartesian grid, showing left
state U (shaded) and right state Ug (unshaded).
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difference in states. This increases the numerical dissipation,
which in turn may reduce the osciliatory nature of the
solution.

This method has the drawback that the computation of
the area a becomes cumbersome for non-Cartesian grids.
Additionally, it is unclear how to simultaneously redefine
the left and right states for both 8, waves and the (6, + 7/2)
shear wave while still maintaining the identity (2.14).
However, when the leit and right states are redefined based
solely on the primary wave-propagation direction 8,,
preliminary computations on a Cartesian grid indicate that
spurious oscillations can be reduced in magnitude using this
method.

The current research has intentionally begun with the
assumption that only the left and right states at each inter-
face, obtained by interpolation along grid lines, are known
at the beginning of the flux function computation. It is then
up to the model to make the most of these input states and
to infer from them the types and directions of waves likely
to be present. This assumption was made to keep the cost of
the grid-independent flux function as low as possible. By
ignoring other surrounding flowficld data, no complex
interpolations are required to obtain gradients in non-grid-
oriented directions. However, practical experience indicates
that this initial assumption may adversely effect the numeri-
cal solution. The inclusion of multidimensional input states
might be helpful or even necessary to improve the robust-
ness of the model, particularly in regard to monotonicity.

Some evidence in support of this idea comes from Parpia
[7], who has developed an unstructured finite-volume
Euler algorithm with a flux function similar to the one
described in this paper. However, wavestrengths and orien-
tations are now determined from gradients within each
triangular cell rather than from data along a line. The incor-
poration of this extra information into the flux function
appears to improve the quality of the solutions by reducing
many of the spurious oscillations without resorting to any
type of angle-limiting procedure. Additionally, resuits
can now be converged several orders of magnitude without
tricks such as freezing wave-propagation directions. Since
this and other related research [16] are still evolving
rapidly, however, it is difficult to draw any firm conclusions
regarding the necessity of including multidimensional data
in order to improve the robustness and monotonicity of
these models. Certainly the cost and complexity must
always be weighed against the solution quality in order for
any method to become practical for general use.

REFERENCES

1. A. Dadone and B. Grossman, 1991

(unpublished ).
2. 8. Davis, J. Comput. Phys. 56, 65 (1984).
3. 8. Godunov, Math. Sb. 47, 271 (1959).

AlAA  Paper 91-0635,



S

6

A MULTIDIMENSIONAL FLUX FUNCTION 323

. C. Lacor and C. Hirsch, 4744 J. 30, 56 (1992).

. D. Levy, K. Powell, and B. van Leer, ALAA Paper 89-1931-CP, 1989

{unpublished).

. 8. Obayashi and P. Goorjian, AIAA Paper §9-1957-CP,

(unpublished).
. L. Parpia, private communication (1991).

I. Parpia and D. Michalek, AIAA Paper 90-3016-CP,
{unpublished).
[. Parpia and D. Michalek, AIAA Paper 91-1545.CP,
(unpublished).

1989

1990

1991

10. K. Powell and B. van Leer, ATAA Paper 83-0095, 1989 (unpublished}.
11. P. Roe, J. Comput. Phys. 43, 357 (1981).
. P.Roe, J. Compur. Phys. 63, 458 (1986).

13. C. Rumsey, B, van Leer, and P. Roe, AIAA Paper 91-1530-CP, 1991
(unpublished ).

15. C. Rumsey, Ph.D. thesis, University of Michigan, 1991 {unpublished).

16. R. Struijs, H. Deconinck, P. DePalma, P. Roe, and K. Powell, AIAA
Paper 91-1550, 1991 {unpublished }.

17. V. Venkatakrishnan, Comput. Fluids 18, 191 (1990).

[
(=]



